Integrative RNA and ChIP-Seq analysis of regulatory T-cells

Integrative RNA and ChIP-Seq analysis of regulatory T-cells , a Strand NGS application note describes how integrated multi-omics functionality in Strand NGS was used to find the regulatory role of FoxP3 in T-regulatory and T-helper cells. Learn how the gene expression profiles from RNA-Seq and FoxP3 DNA-protein binding sites from ChIP-Seq are integrated. For mor … Continue reading “Integrative RNA and ChIP-Seq analysis of regulatory T-cells”

Integrated mRNA and microRNA transcriptome analysis in Strand NGS

Using a nasopharyngeal carcinoma case study, this paper highlights the integrated transcriptome analysis capabilities of Strand NGS demonstrating the identification of miRNA – mRNA interactions in regulatory networks. Read the application note on Integrated mRNA and microRNA transcriptome analysis in Strand NGS by Veena Hedatale and Rohit Gupta. For more information, please contact us

Strand NGS-Calling narrow and broad peaks from ChIP-Seq data

Know about the state-of-the-art algorithms implemented in Strand NGS for detecting the binding sites of transcription factor (narrow peaks) and enriched regions of histone modification (broad peaks) from ChIP-Seq data. Read the benchmarking study on Calling narrow and broad peaks from ChIP-Seq data in Strand NGS by Rohit Gupta and Anita Sathyanarayanan. For more information, … Continue reading “Strand NGS-Calling narrow and broad peaks from ChIP-Seq data”

Strand NGS v2.5 Release Announced – Know what’s new in it?

Happy to share the release of Strand NGS v2.5. This release comes with many new exciting features and enhancements. Some of the major enhancements include new workflow for MeDIP-Seq analysis, split read alignment, new structural variant caller using split reads, additional RNA QC plots, enhanced RNA-Seq workflow to handle large-scale projects, correlation analysis, meta-data analysis, new … Continue reading “Strand NGS v2.5 Release Announced – Know what’s new in it?”

Live webinar on Copy Number Detection in Inherited Disorders and Somatic Cancer

Copy number variants constitute a significant fraction of genomic alterations responsible for cancer and various inherited disorders. In a clinical setting, performing focused NGS testing based on a panel of relevant genes is both economical and provides faster results. Thus the ability to detect CNVs from gene panel based NGS tests increases the diagnostic yield … Continue reading “Live webinar on Copy Number Detection in Inherited Disorders and Somatic Cancer”